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Abstract—A general catalytic addition of nitromethane to simple N-diphenylphosphinoyl ketimines is achieved using either
10 mol % 1,1,3,3-tetramethylguanidine (TMG) or 10 mol % phosphazene (t-Bu-P1) as organic base catalysts in good to high yields.
On the other hand, N-sulfinylketimines also furnished the aza-Henry product in good yield with moderate diastereoselectivity (3:1).
Thus, the methodology developed here is a good template for developing the first organocatalytic approach towards the aza-Henry
reaction of ketimines.
� 2007 Elsevier Ltd. All rights reserved.
The synthesis of b-nitroamines via the aza-Henry (or
nitro-Mannich) reaction is an attractive tool to create
carbon–carbon bonds.1 Moreover, the product obtained
can be easily converted into vicinal diamines and a-
amino-acids, by reduction2 and Nef reaction,3 respec-
tively, this highlights the several important synthetic
applications of these compounds.4

Due to the importance of the 1,2-diamine structural
motif in biologically active natural products and drug
candidates, considerable effort has been devoted from
academic and industrial researcher in this direction to
the development of a general method to synthesize this
class of compounds.5 To date, most of the reactions
are known for aromatic aldimines and the general cata-
lytic method for ketimines has rarely been studied
because of their low reactivity towards nucleophilic
addition owing to steric hindrance as well as the elec-
tronic effect in the C–C bond forming step and their
propensity to enolization.6 These reactions are catalyzed
or promoted by metal salts or strict conditions.7,8 On the
other hand, only few metal-free reactions of ketimines
have been reported so far.9,10 Recently, the diastereo-
selective aza-Henry reaction of sulfinyl ketimines has
been reported using sub-stoichiometric amount of bases
such as TBAF and NaOH.11 After literature survey, we
found that there is not even a single example of the
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aza-Henry reaction of ketimines catalyzed by an organic
base to date. Therefore, the development of such a reac-
tion in a simple, efficient, atom economical way and
environmentally friendly approach is highly desirable.
Herein we report significantly simplified methods for
the catalytic aza-Henry reaction of ketimines using
metal-free conditions (Eq. 1).
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As an initial experiment, we chose tosyl (PG = Ts,
R1 = Ph, R2 = Me) ketimine 1 as the model substrate
due to its highly polarized character of C@N bond.
The use of 10 mol % 1,1,3,3-tetramethylguanidine
(TMG) base as catalyst and CH3NO2 as nucleophile
as well as solvent partner at room temperature did not
afford aza-Henry product 2, but by-product 2 0 was
obtained quantitatively (Table 1, entry 1).12 This result
clearly indicates that the presence of the strong elec-
tron-withdrawing tosyl group led the product (2:
PG = Ts) unstable under the present reaction condi-
tions. We then searched for other protecting groups
and the representative results are summarized in Table
1. The reactions of N-benzyl- and phenyl-protected keti-
mines as substrates were examined, but none of them
furnished the desired products and complete recovery
of the starting materials was observed, respectively
(entries 2 and 3). The most probable reason for this
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Table 1. Screening of protecting groups in aza-Henry reactiona
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Entry PG Time (h) Yieldb (%)

1c Ts 24 —
2d CH2Ph 24 —
3d Ph 24 —
4 P(O)Ph2 14 91

a Unless otherwise noted, all reactions were carried out with N-pro-
tected ketimines 1 (0.1 mmol) and nitromethane (2.0 mL) at room
temperature.

b Isolated yield.
c The reaction was carried out at 0 �C to room temperature, the desired

product was not obtained at all, but by-product 20 was obtained
quantitatively.

d Starting material was recovered.

Table 2. Screening of catalystsa
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Entry X mol % catalysts Time (h) Yieldb (%) SM (%)c

1 TMG (10 mol %) 14 50 43
2d TMG (10 mol %) 14 85 10
3 TBD (20 mol %) 15 44 7
4d MTBD (10 mol %) 15 43 5
5e TMG (10 mol %) 14 91 —
6e TBD (20 mol %) 15 88 —
7e MTBD (10 mol %) 15 90 —
8e t-Bu-P1 (10 mol %) 8 89 —

a Unless otherwise noted, all reactions were carried out with ketimine
1a (0.1 mmol) and nitromethane (5 equiv) in the presence of indi-
cated catalyst and THF (0.5 mL) at room temperature.

b Isolated yields.
c Recovery of starting materials.
d Nitromethane (10 equiv) was used.
e Nitromethane (2.0 mL) was used as solvent.
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may be due to the low electrophilicity of ketimine under
the present conditions. To our delight, when N-di-
phenylphosphinoyl ketimine13,14 was used as substrate
under the above conditions, the desired product was
obtained in 91% yield (entry 4).

Next, we examined the catalytic activity of various other
organic bases with N-diphenylphosphinoyl ketimine.
The representative results are documented in Table 2
(Eq. 3). Among the conventional organic bases tested,
the use of TMG (pKBH+ = 23.3 in CH3CN)15a,b and
nitromethane as solvent gave the best result (Table 2,
entry 5); while reducing the amount of nitromethane
dramatically decreased the yields of the product
(entries 1–4). Other bases, such as 1,5,7-triazabi-
cyclo(4.4.0)dec-5-ene (TBD, pKBH+ = 26.03 in CH3CN)
and 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD,
pKBH+ = 25.49 in CH3CN), were also equally effective
(entries 6 and 7). Then, we further investigated other
strong organic bases. Phosphazene bases developed by
Schwesinger et al.15c,d are well known to be an extremely
strong, less nucleophilic, and metal-free bases. As
expected, the use of 10 mol % phosphazene base
(t-Bu-P1, pKBH+ = 26.98 in CH3CN)15e efficiently pro-
duced the desired product at a shorter reaction time with
comparable yield (entry 8). However, the common
organic base, NEt3 (pKBH+ = 18.83 in CH3CN),15a did
not promote the reaction at all. Other solvents, such
as THF, CH2Cl2, CH3CN, and diethyl ether, were also
tested but none of them were effective since we observed
remarkable reductions in the rates of reaction and
yields, presumably due to the dilution effect.

With the optimal reaction conditions (i.e., 10 mol %
TMG or 10 mol % t-Bu-P1) in hand,16 a series of N-
diphenylphosphinoyl ketimine (1) were reacted with
nitromethane under conditions A and B to afford aza-
Henry products (2) in good to high yields. The results
are summarized in Table 3. In all the cases, the reactions
proceeded smoothly to give the desired products. The
substrates bearing electron-withdrawing and electron-
donating groups at the para-position of the aromatic
ring (R1) as well as sterically demanding 1-naphthyl
substituent were well tolerated under the reaction condi-
tions and furnished the corresponding addition products
(2b–e) in good to excellent yields (Table 3, entries 2–5).
Although substrates (1f–i) seemed to exhibit diminished
reactivity due to steric hindrance around the ketimine
functionality compared to the other substrates (entries
1–5), their performance was still satisfactory and the
addition proceeded smoothly with reasonable yields
(entries 6–9). More interestingly, aliphatic type of
substrate (1j: R1 = Ph(CH2)2–, R2 = Me) also under-
went the reaction to furnish the desired product (2j) in
good yield (entry 10). Finally, we examined the diastereo-
selective aza-Henry reaction using nitroethane under the
optimized conditions, and the desired product was
obtained as a diastereomeric mixture (ratio of 3:1) in
more than 90% yield (entry 11).

In order to further explore the present reactions with
better substrate scope, we envisioned that N-sulfinyl-
ketimine 311,17 would be a model substrate to test the
diastereofacial selective reaction. The fact that the N-sulfi-
nyl group can act as a good chiral auxiliary and activate
the C@N bond has attracted considerable interest in
organic synthesis.18 Initially, condition A was examined
and the desired aza-Henry product was obtained as a
diastereomeric mixture (1:1) in moderate yield even after
the reaction time and the reaction temperature were
increased (Eq. 5). Interestingly, when condition B was
used, the product was obtained in excellent chemical
yield and the selectivity was moderately increased (3:1).



Table 3. Aza-Henry reaction of N-phosphinoyl ketimines catalyzed by TMG or phosphazene (t-Bu-P1)a

Cond. A: 10 mol% TMG

Cond. B: 10 mol% t-Bu-P1
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Entry R1 R2 R3 Time (h), yieldb (%) Product

Condition A Condition B

1 1a: Ph Me H 14, 91 8, 89 2a

2 1b: p-Cl-C6H4– Me H 11, 95 11, 87 2b

3 1c: p-Me-C6H4– Me H 15, 80 15, 75 2c

4 1d: p-MeO-C6H4– Me H 15, 82 15, 80 2d

5 1e: 1-Naphthyl Me H 15, 93 15, 90 2e

6 1f: Ph Et H 15, 85 15, 82 2f

7 1g: Ph i-Pr H 24, 90 24, 84 2g

8 1h: Ph n-Pr H 24, 96 24, 85 2h

9 1i: Ph p-Cl-C6H4– H 21, 92 21, 90 2i

10 1j: Ph(CH2)2– Me H 30, 90 36, 91 2j

11 1a: Ph Me Me 36, 90 36, 91 2k

(dr: 77:23)c (dr: 76:24)d

a Unless otherwise noted, all reactions were carried out with ketimines 1 (0.1 mmol) and nitromethane (2.0 mL) at room temperature under
conditions A and B, respectively.

b Isolated yield.
c The diastereomeric ratio was determined by 1H NMR spectroscopic analysis of the crude product mixture and the reaction was run at 0 �C.
d The reaction was run at room temperature with nitromethane (1.0 mL).
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Conditions

3

Condition B :10 mol% t-Bu-P1, 0 oC, 24 h, 
   yield: 95%, 4/4' = 75:25

4

Condition A :10 mol% TMG, RT, 24 h,
   yield: 50%, 4/4' = 50:50
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In conclusion, we have described for the first time the
organic base-catalyzed aza-Henry reaction of ketimines.
The wide substrate scope demonstrated under the pres-
ent reaction conditions clearly indicates the potential
utility of this reaction to further organic transforma-
tions. The template shown here provides the ground
for the development of the reaction to be asymmetric ver-
sion using chiral guanidines as an organic base catalyst.19

To achieve this goal, improvements of the reaction effi-
ciency are currently being pursued in our laboratory.
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